A local L2-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems

نویسندگان

  • GUOHUI ZHOU
  • G. ZHOU
چکیده

— We consider the discretization of linear, nonstationary, convection-dominated, convection-diffusion Systems by the streamline diffusion finite element method and give local error estimâtes in the energy norm for both linear scalar équations in arbitrary dimensions and for Systems in one space dimension. For piecewise linear shape functions in time-space that are continuons in space and discontinuons in time, we obtain optimal local error estimâtes of order O(h ) in those strip régions parallel to the streamline direction in which the exact solution is smooth. Résumé. — Dans cet article nous considérons la discrétisation par la méthode SDFEM (Streamline Diffusion Finite Element Method) d'équations de convection-diffusion linéaires instationnaires à convection dominante. On donne une estimation d'erreur locale dans la norme-énergie pour des équations de convection-diffusion scalaires linéaires instationnaires à convection dominante dans un espace de dimension arbitraire ainsi que pour des systèmes unidimensionnels. On obtient, pour les fonctions de base linéaires par morceaux en temps ainsi qu'en espace (continues en espace et discontinues en temps), une estimation d'erreur locale d'ordre optimal O(h ) dans les bandes parallèles aux caractéristiques où la solution est lisse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems

Some least-squares mixed finite element methods for convectiondiffusion problems, steady or nonstationary, are formulated, and convergence of these schemes is analyzed. The main results are that a new optimal a priori L2 error estimate of a least-squares mixed finite element method for a steady convection-diffusion problem is developed and that four fully-discrete leastsquares mixed finite elem...

متن کامل

Weighted Error Estimates of the Continuous Interior Penalty Method for Singularly Perturbed Problems

In this paper we analyze local properties of the Continuous Interior Penalty (CIP) Method for a model convection-dominated singularly perturbed convection-diffusion problem. We show weighted a priori error estimates, where the weight function exponentially decays outside the subdomain of interest. This result shows that locally, the CIP method is comparable to the Streamline Diffusion (SD) or t...

متن کامل

Local Error Estimates of the Ldg Method for 1-d Singularly Perturbed Problems

In this paper local discontinuous Galerkin method (LDG) was analyzed for solving 1-D convection-diffusion equations with a boundary layer near the outflow boundary. Local error estimates are established on quasi-uniform meshes with maximum mesh size h. On a subdomain with O(h ln(1/h)) distance away from the outflow boundary, the L error of the approximations to the solution and its derivative c...

متن کامل

Nečas Center for Mathematical Modeling An Optimal L∞(L2) - Error Estimate for the DG Approximation of a Nonlinear Nonstationary Convection-Diffusion Problem on Nonconforming Meshes

This paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion Dirichlet problem. General nonconforming simplicial meshes are considered and the SIPG scheme is used. Under the assumption that the exact solution is sufficiently regular an L∞(L2)-optimal error estimate is d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017